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We revisit the Landau-Teller heuristic approach to adiabatic invariants and, 
following Rapp, use it to investigate the energy exchanges between the different 
degrees of freedom, in simple Hamiltonian systems describing the collision of 
fast rotating or vibrating molecules with a fixed wall. We critically compare the 
theoretical results with particularly accurate numerical computations (quite 
small energy exchanges, namely of one part over 103~ are measured). 
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1. I N T R O D U C T I O N  

The problem of estimating the energy exchanges between fast and slow 
degrees of freedom is a very relevant one in many domains of physics, and 
is in fact the main motivation for the study of adiabatic invariants. 
Different approaches lead, in the analytic case and for a single fast degree 
of freedom of frequency co, to exponential estimates of the form 

I A E l < g e  - ; ~  , d~ 2 > 0  (1.1) 

A rigorous mathematical scheme, leading in particular to the above law, is 
provided by classical perturbation theory (1'2) (see ref. 3 for a particular 
extension to the case of several oscillators). As is well known, perturbative 
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methods are quite general and powerful, and at least in some cases they 
likely lead to optimal qualitative results: unfortunately, however, the 
estimates one gets for the constants--in particular, in the problem at hand, 
for 2, which is the most relevant one--are terribly pessimistic, and certainly 
far from optimal. 

An interesting heuristic approach to the problem, also leading to the 
above exponential law, was proposed in 1936 by Landau and Teller (4) (in 
fact, the essential ideas go back to Jeans(5'6)). To illustrate the method, let 
us consider a particular application due to Rapp, (7'8) where one considers 
the problem of the collinear collision of a diatomic molecule with a point 
mass, or equivalently with a fixed obstacle (for an application to plasma 
physics, see refs. 9 and 10). After some preliminary work, Rapp is led to 
consider the particular Hamiltonian 

H(x,y, px, py)=l 2 1 2 ipx+~(py+coZy2)+(l+y)e-X (1.2) 

where x is the distance between the (center of mass of) the molecule and 
the colliding particle (or the obstacle), while y is the internal degree of 
freedom of the molecule, and p~, py are the corresponding momenta. The. 
equations of motion of the system are 

2 - e - X = y e  -x, p+co2y=  _e  -x (1.3) 

and one is interested in the energy AE acquired by the oscillator after the 
collision. Working on the equation for y by the so-called method of varia- 
tion of arbitrary constants, one easily gets for AE the integral expression 

,dE= (2Eo) m IJI cos q~o -t- �89 2, J=f;ooe X(')e-'~ (1.4) 

where E o is the energy of the oscillator at t = - 0 %  while x(t) is the 
(unknown) motion of the x variable, and q~0 is a convenient asymptotic 
phase (see ref. 7 or ref. 11 for details). 

Now, the essence of the Landau-Teller method consists in replacing 
the true motion x(t) inside the integral J by the free motion 2(0, namely 
the solution of the equation 

2 _ e - x = o  

in which the internal degree of freedom y does not appear. At variance with 
the true solution x(t), the approximated solution Yc(t) is independent of a~, 
so that J reduces to the Fourier transform of e-~(t); as a consequence, in 
this analytic case, J decays exponentially with o9, and the coefficient of o9 
at the exponent turns out to coincide with the width ~ of the analyticity , 



Landau-Teller Approximation 177 

strip of e ~,) (thought of as function of the complex time t). In this 
approximation one then gets for A E  an expression of the form 

A E =  Ce ~'  cos q0 o + C'e-2~'~ (1.5) 

which gives in particular the exponential law (1.1). For  the particularly 
simple potential introduced in the model, v is easily computed explicitly, 
and one gets ~ = 7r/Vo, where Vo is the asymptotic value, at t =  -0 % of the 
velocity d2/dt .  

The Landau-Teller approximation has been successfully used in 
several occasions (see, for example, refs. 8 and 10); on the other hand, as 
explained in more detail in ref. 11, it is not so easy to provide for it a clear 
justification, and in particular to understand its range of applicability. In 
fact, only in a very particular case, namely when the initial energy Eo prac- 
tically vanishes, has the approximation been rigorously justified; (m indeed, 
under this strong (but apparently unavoidable) assumption, one is able to 
prove that the width ~* of the analyticity strip of the true solution x ( t ) ,  
which in general depends on co, tends 4 for large co to the approximate value 

= r~/vo. For  Eo > 0, as far as we know, no clear result is available. 
The main purpose of the present paper is to make a very  accurate  

numerical investigation of the reliability of the Landau-Teller approx- 
imation in the case Eo>0 .  More precisely, we first introduce a minor 
rearrangement in the approximation, which makes it suitable to treat a 
wider class of models, in particular a model including a fast rotator in place 
of an oscillator. From this modified scheme, we deduce the exponential law 
for the energy exchanges, with some further details not appearing in the 
original version of the approximation, and then compare these results with 
numerical computations; according to ref. 12, the use of a symplectic 
integration algorithm allows one to appreciate very small energy exchanges 
(up to quanti t ies ,  say,  o f  one par t  over 103~ so the test is indeed quite 
accurate. As a result, one finds a really excellent agreement, at least with 
regard to the value of the coefficient 2, which is always found to coincide, 
for large co, with the free value z. 

On the other hand, we also give a numerical estimate of the true 
analyticity width z*; as a matter of fact, we find that not only does ~* not 
converge t o ,  for large ~o, but it apparently tends to zero. This indicates in 
particular that the mechanism proposed in ref. 11 to justify the Landau-  
Teller approximation is not a general one. In fact, the situation is, in our 
opinion, a bit paradoxical, and the only conclusion we are able to draw 
is that the problem of understanding the Landau-Teller  approximation 
should be still considered as essentially open. 

4 More precisely, a lower bound to r* tends to z. 
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2. THE L A N D A U - T E L L E R  A P P R O X I M A T I O N  IN 
A C T I O N - A N G L E  V A R I A B L E S  

Let us consider a Hamiltonian system of the form 

g(I, qo, p , x ) = h ( I ) +  + f(I,  q~,x) (2.1) 

with I e ~ ,  ~0eS 1, (p,x)  EN2n; we assume the interaction vanishes at 
infinity, more precisely 

lim #f  Ixl ~ oo ~x~ = 0, i =  1 ..... n (2.2) 

Hamiltonian (1.2), after the introduction of the usual action-angle coor- 
dinates for the oscillator, is a particular case of Hamiltonian (2.1), for 
n= 1, h(I)=coI, and f =e-X[1 + (2I/~o) 1/2 cos q0]. Instead, for h ( I )=  �89 
and some f independent o f / ,  one describes the scattering of a rotator by 
a fixed obstacle. 

The Landau-Teller approximation in these variables can be formulated 
as follows: consider an asymptotic state before the collision, say p = Po, 
x(t)= xo + pot, I=Io, and 

~h 
~o(t) = cot + q~0, ~o =~-~ (Io) (2.3) 

Then proceed as follows: 

(i) Replace the interaction potential f by its average f on ~p, and 
introduce the free motion /~(t), 2(t) of the p, x variables, defined as the 
solution of the Hamiltonian problem 

fI(p, x )= Ip[2 + f(Io, x) (2.4) 

with initial data corresponding to the above-considered asymptotic state. 

(ii) Compute the change AI of the action by 

3I= f~ -~  (Io, q~(t), 2(t) ) dt (2.5) 

and then compute the corresponding energy exchange AE= 
h(I o + AI) - h(Io). 
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Let us here show the outcome of this approximation scheme in the 
case of a rotator, i.e., for h(I) = 1 2 31,  and f independent of I; the case of an 
oscillator is slightly more delicate, and will be discussed in Section 4. To 
this purpose, let us consider the Fourier expansion of the potential )co 

so that 

f (x ,  q~)= ~ ~ ( x )  e ik~ (2.6) 
k E 2  z 

• f  . 

G = z  Z ko~(x) e ik~ 
k ~ Z  

From (2.5) one immediately gets 

(2.7) 

with 

AI= ~ Jke ik~~ 
k c  / /  

Yk= - i k  f~_~ ~ ( 2 ( t ) )  e ik~ dt (2.8) 

By standard arguments (shift of the integration path) one has then 

Jo=O, IJkl <<.Cke -Ikl~k~ for k4:0  (2.9) 

with suitable Ck > 0, rk being the width of the analyticity strip of ~(:~(t)). 
In fact, unless the relevant singularities are simple poles, the "constants" Ck 
in general depend on o9; the dependence, however, is much weaker than 
expotential, so in the following this possibility will be neglected. Moreover, 
in typical cases, one has zk = z independent of k, so that, for large 09, the 
first Fourier component dominates. One has then 

d I "  Re(J1 e i~~ = Cle -~~ cos(~Po- ~)  

with suitable phase qs. Now, the relation between d I  and the energy 
exchange AE is, in our case, 

A E =  09 AIq- �89 2 (2.10) 

If one considers only the above leading term, one then gets 

d E "  r - ~  cos(~po - ~)  (2.11) 

More in detail, one can introduce the Fourier decomposition of AE, 

d E =  ~ gke ik~~ 
k ~ Y  
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From (2.9) and (2.11) one then gets different exponential laws for the 
different Fourier components, namely 

INol <~Do e-2~), INkl <~coDke -Ikl~~ for k # 0  (2.12) 

with suitable constants Dk. 
The similarity of these results with (1.5) is evident, the only difference 

being, in (1.5), the absence of higher Fourier components; some further 
comments on this point are deferred to Section 4. In Section 3 we shall 
instead perform a quite critical numerical test of these heuristic analytic 
results, by comparing them with rather accurate numerical results. 

3. N U M E R I C A L  R E S U L T S  F O R  T H E  R O T A T O R  

We study here numerically a particular Hamiltonian system describing 
the scattering of a rotator by a smooth potential well in one dimension; the 
Hamiltonian has the form 

2 
I2 + -~m + V(r), H(I, ~o, p, x) = 2-~a 2 r = x - a  cos ~o 

a is a constant (which represents essentially the diameter of the rotator). 
A system of this form was already considered in ref. 13, which here we 
partially follow. In a first series of experiments, we consider the particular 
potential 

e rid 

V(r) = V o -  (3.1) 
rid 

We took a = d/10, and used m, d, and Vo, respectively, as units of mass, 
length, and energy. 

In each elementary experiment we fix initial data I o, q~o, P0, xo with 
very large xo in order for the interaction be negligible; a typical choice is 
Xo = 70d. 5 Notice that in these conditions Io and Po practically coincide 
with the asymptotic quantities introduced in the previous section, and in 
particular one has co = Io/(ma2), while q~o differs from the asymptotic value 
for an irrelevant constant. We stop the run when we have again X=Xo,  
and measure the energy exchange AE between the translational and the 
rotational degrees of freedom due to collision; having fixed xo, AE turns 
out to be a function of Io, Po, and q~o. 

5 For such a value, the interaction is negligible even in quadruple precision (32 decimal digits). 
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In order to determine the Fourier components gk and verify the 
exponential laws (2.11), (2.12), we compute AE for "many" values of q~o 
(we shall be more precise on this point later) at fixed Po and co; then we 
repeat the cycle of computations for different values of co at fixed Po, and 
finally we repeat the whole set of computations for different values of Po. 

The ~0 dependence of AE at fixed co = 120 and Po = ~ ,  i.e., initial 
translational energy E~ = 1, is shown in Fig. 1; it is quite evident that, in 
agreement with the theoretical analysis of the previous section, the first 
Fourier component actually dominates. Figure2 reports instead the 
Fourier coefficients Igkl, k = 0 ,  1, 2, 3, as functions of co at fixed E~= 1. It 
is quite clear that, for not too small co, the data are nicely arranged on 
straight lines, corresponding to exponential laws of the form 

Igk[ = Cke -~~ (3.2) 

Notice that one is able to follow the exponential laws over a quite wide 
range, namely for I~kl, say, between 10 - 3  and 10-3~ (i.e., for 27 orders of 
magnitude; see later for comments). According to (2.12), one expects the 
coefficients 2~ be related to the width r of the analyticity strip of 2, by 

2o = 2z, 2 ~ = k r  for k r  (3.3) 

The quantity z is computed as follows: quite in general, one has (4) 

fx dx (3.4) 
2 { 2 [ E ~ -  V(x)] } ~/2 

Im 

2 
• 

W 

2 o  
C~ 

% 
X o . o  1 2. 3. d. 5. d. 

i 

Ph~ 

Fig. 1. The energy exchange between rotational and translational degrees of freedom, due to 
the collision, as a function of the initial phase ~p of the rotator. 
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Fig. 2. The amplitude of the Fourier components Ig01 (triangles), Ig, I (diamonds), lg2l 
(stars) and 1~31 (squares), as function of frequency co, for fixed initial kinetic energy E~ = 1. 
The data refer to the potential (3.1). 

where V is the average of V on the angle r while xl  = xl(E;) is the turning 
point of  the free mot ion  2(t), and x2 is the location of the relevant 
singularity of  V (i.e., the one giving the lowest value of the integral); in the 
problem at hand, it is not difficult to recognize that one has x2 = a. The 
integral is easily computed numerically for each given E~; for the above 
considered value E~ = 1 one finds ~ = 0.4709. At the same time, by a best 
fit of  the last data of Fig. 2 one easily computes the coefficients 2k; as a 
result, one gets 

2o/r = 1.92, 21/r = 0.988, )~2/v = 1.98, 1 ~ 3 / ' C  = 2.99 

in good agreement with the theoretical expectation (see, however, the 
discussion at the end of this section). 

Quite similar results are found for different values of  E~. In particular, 
in agreement with the Landau-Teller approximation, the slope 41 practi- 
cally coincides in any case with ~; this can be seen in Table I, where these 
quantities are reported for three different values of  E;.  

The possibility of computing energy exchanges as small as those 
appearing in Fig. 2 may be surprising, namely one can wonder whether such 
precision is a priori compatible with the truncation errors of the numerical 
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Table I. A Comparison between the Coeff ic ient  k 1 
Appearing in the Exponential Law and the 

Width  of the Analyt ici ty Strip T, at 
Di f ferent  Values of E~ a 

1 0.4656 0.4709 0.9887 
2 0.2091 0.2123 0.9849 
6 0.0419 0.0427 0.9812 

a The interaction potentialis given by (3.1). 

algorithm. 6 We cannot enter here into this delicate question, which is 
treated in detail in ref. 12. As there explained, the essential point is on one 
hand the use of a symplectic integration scheme (we used the simplest one, 
namely the so-called leapfrog algorithm), and on the other hand the fact 
that, due to the decay of the potential at infinity, asymptotically the algo- 
rithm is exact. As a check of consistency, one can make the usual test on 
the conservation of the total energy; in our conditions, the relative error in 
the energy conservation at the end of each run never exceeds 10 31. In 
ref. 12 one can find a wide theoretical discussion of this problem, which is 
there rigorously studied in the framework of perturbation theory. The 
essentials of the question, with more emphasis on numerical details, can be 
found in the already quoted ref. 13, Section 4, where the possibility of very 
accurate computations of energy exchanges in scattering problems was first 
recognized (we used here exactly the same numerical method). 

Let us then come to the problem of the computation of the Fourier 
components gk. We proceeded as follows: we measured the energy 
exchange AE at fixed Po and I 0 for N equally spaced initial phases 2M/N, 
l = 0,..., N -  1, and then computed the quantity 

N - - 1  

gk = ( l /N) ~ AE(2M/N) e 2i~kt/N (3.5) 
l = O  

For large N, ~ is expected to be a good approximation of gk. One could 
imagine that, to reach the precision exhibited in Fig. 2, very large values of 
N are necessary; in particular, it may appear that the computation of 
higher harmonics is more difficult for large co, when they are relatively 
small. On the contrary, precisely for large co the value of N turns out to 
be fairly irrelevant: for example, using N = 2 5 6  or 16 or even 8 gives 

6 Roundoff errors are less important, in particular, if one works (as we did) in quadruple 
precision, with at least 32 significant digits. 
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practically identical results. This fact is easily explained as follows: one 
easily checks that one has 

1 N 1 {lofOrk'=kmodN ~ e-2i~zkl/Ne 2Btk'l/N= 
t = o otherwise 

as a consequence, from (3.5) one immediately gets 

4= Z ek+jN 
j E Z  

In our case, the amplitude of the Fourier components  decreases so rapidly 
with k that even for relatively small N, ~k almost coincides with g~. Practi- 
cally, in most-computat ions ,  we used N =  8, and also, as a check, N =  16; 
only in some cases, as a further check, did we use N = 256. One could see 
that to compute reliably the first harmonic gl, even N =  3 turns out to be 
sufficient. 

The whole sequence of numerical experiments has been repeated for 
different choices of  the interaction potential V, with similar results. For 
example, Fig. 3 shows the coefficients [g~[ vs. ~ for an interaction potential- 
with an attractive part, namely 

V(r)= VoI~(~a~2--~a~e-r/a (3.6) 

o 
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Fig. 3. The same as Fig. 2, for the potential  (3.6). 
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with r being as in (3.1). The figure refers to E~ = 1 in natural units; for this 
value of energy, in good agreement with (2.12), one finds 

2o/r = 1.92, 21/r = 0.986, )~2/r = 1.97, 23/r = 2.96 

The agreement between 21 and z is also good for different values of energy, 
as shown in Table II. 

Similar results, not reported here, have been found for other choices of 
V, in particular for the potential 

e (r/d)2 
f ( r )  = V o - -  

r / d  

considered in the already quoted ref. 13. 
As remarked in the Introduction, the heart of the Landau-Teller 

approximation is the use of the approximate solution 2(t) in place of the 
true solution x ( t )  to compute the width of the analyticity strip r; corre- 
spondingly, the essential result of this section is the coincidence of z and )~1. 
As we have seen, the agreement extends to all Fourier coefficients besides 
the leading one: this fact is remarkable, but should be taken with some 
care, and in particular, the situation is not really satisfactory for the 
average g0. Indeed, from (2.10), one immediately deduces 

go = ~OJo + ~ Jk~Ck (3.7) 
k~>o 

and the exponential law go ~ e 2~ is due to the fact that, according to 
(2.8), J0 vanishes, so that the dominant contribution in (3.7) is I~12. On 
the contrary, as one could see, numerical computations show that J0 does 
not vanish, and, moreover, it gives the dominant contribution to Eo; for 
this reason, we cannot really say that the Landau Teller approximation 
completely explains the exponential law for the average. By the way, one 
could see that a similar problem also arises for the original version of the 
approximation, sketched in the Introduction. Let us also notice that (in 

Table  II. The Same  as Table  I, for  the  
In teract ion  Potent ia l  (3 .6 )  

E~ 21 z 21/z 

1 0.1375 0.1394 0.9863 
2 0.0890 0.0903 0.9856 
3 0.0662 0.0676 0.9792 
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both versions of the approximation) the average of AE turns out to be 
positive definite (i.e., the internal rotational or vibrational energy 
increases), and this is hardly believable. We are not able to explain why, 
in spite of these problems, the results for the average and the higher-order 
harmonics follow so closely the theoretical expectation. 

4. RESULTS FOR THE OSCILLATOR 

We consider here a Hamiltonian system of the form 

2 2 

H(x' y' Px' PY)=~m+ P-~- zmco2 2 2 m + ~ - - y  +V(r),  r = x - y  (4.1) 

namely a generalization of (1.2); having in mind a scattering problem, one 
assumes V(r)-*O for r ~  +oo. After the introduction of the usual 
action-angle variables for the oscillator, one gets (using the same notation 
H for the Hamiltonian) 

H(I, q~, Px, x) = col+ p2x/2m + V(r), r = x - (2I/mco) m sin q~ (4.2) 

Let us remark that the use of action angle variables is very important, not 
only to apply the theoretical analysis outlined in Section 2, but also to 
perform accurate numerical integration. Indeed, the use of these variables 
is necessary to construct a symplectic integration scheme which is asymp- 
totically exact; as remarked in the previous section, this is an essential 
requirement to reach the high precision we need in the computation of the 
energy exchanges. The algorithm we used, following ref. 14, is a natural 
generalization of the leapfrog algorithm, and is implicitly defined by the 
generating function 

S(I', ~o, p'~, x) = I' q) + p'~ + eH(I', qo, p'~, x) 

e is the time step. 
We made the choice V(r)= (Vod/r)e -rId and performed a sequence of 

numerical experiments similar to the one described in the previous section; 
more precisely, having fixed Xo >> d, we computed the energy exchange AE 
as a function of the initial translational energy E o = p~/2m, of the vibra- 
tional energy E y =coI  o, of the initial phase ~Oo, and of the frequency co. 
Figure 4, which is the analog of Figs. 2 and 3, shows the behavior of the 
first Fourier harmonics ~k of AE as functions of co at fixed E~ = 2 and 
E ~ =  1 (in natural units, as in the previous section). Exactly as for the 
rotator, one finds exponential laws of the form (3.2). 
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Fig. 4. The same as Fig. 2 and Fig. 3, for the oscillator. 

Concerning the theoretical interpretation, there is a minor variant with 
respect to the case of  the rotator, due to the fact that the averaged inter- 
action potential f introduced in (2.4) now depends parametrically on co; 
more precisely, for our Hamiltonian (4.2), f turns out to depend on the 
ratio e = (Ef)ll2/co. As a consequence (recalling that for the oscillator one 
has simply AE=co AI), one finds for the Fourier components  of AE 
estimates of  the form 

go = 0 ,  Igkl <~Dke I~i~(~)~ for k~a0 (4.3) 

which differ from a pure exponential because ~ now depends on ~ and thus 
on co. However,  the exponential estimate does not disappear, since for large 
co, at fixed initial energy E~, z tends to a constant to; this can be seen by 
an inspection of the integral expression of ~, similar to (3.4). One could 
also see that 3o coincides with the corresponding constant in the original 
Rapp implementation of the Landau-Teller method. The behavior of �9 as 
a function of co at fixed E~' = 1 is reported in Fig. 5 (solid line); one can see 
that even for not too large values of co, ~ is practically constant. 

From Fig. 4 one easily deduces, by a best fit on the last data, the 
asymptotic values of  the slope 2k for k = 0, 1, 2, 3; as a result one finds 

2o/To = 1.944, 21/% = 0.993, 22/% = 1.980, 23/~o = 2.971 
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Fig. 5. The value of z given by (3.4) as function of ~ (solid line); the asymptotic value z 0 
for ~o ~ ~ (dashed line); the slope of the curve log I~11 as function of ~o (diamonds). 

As one can see, the agreement with (4.3) is satisfactory, with the exception 
of the average go, for which one could repeat the considerations made at 
the end of the previous section. By the way, besides the asymptotic slope, 
one can also evaluate each 2k as a function of 09; this was done for the first 
Fourier component g~, and the result is presented in Fig. 5 (diamonds). As 
a matter of fact, 2t appears to follow rather closely z, even before the 
asymptotic regime. 

The asymptotic values of 21 and �9 at different values of E ;  for fixed 
E~ = 1 are reported in Table III. We also made computations with other 
choices of the interaction potential, with essentially similar results. 

T a b l e  III. T h e  S a m e  as T a b l e s  I and  II, for the 
O s c i l l a t o r  wi th  the Hamil tonian (4 .1 )  

E~ 21 *o 21/zo 

1 0.4936 0.4964 0.994 
2 0.2347 0.2363 0.993 
3 0.1460 0.1469 0.994 
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5. THE LARGE-ou BEHAVIOR OF "TRUE" SINGULARITIES 

In the previous sections, in agreement with the fundamental idea of the 
Landau-Teller  approximation, we made reference to the free motion ~(t), 
namely the solution of the averaged equation (2.4), and in particular to the 
distance z of the relevant singularity from the real axis. In this section we 
compare v with the corresponding quantity v*, relative to the true solution 
x( t ) .  One could expect that z is close to ~*, at least for large ~o (see the 
short discussion in the Introduction); in fact, as shown in the already 
quoted ref. 11, this is the case for the oscillator if the initial energy Eo y 
vanishes. Instead, as we shall see, the situation is apparently totally 
different if one considers the rotator or the oscillator at nonvanishing E~: 
indeed, not does only ~* turn out to be quite different from T, but 
apparently it goes to zero for large ~o. 

The value of z* can be computed numerically in the t~ollowing way: 
denote by t = s + i a  the complex time variable; let to---So be the (real) 
initial time, with X(to)>> d, and let tl = sl be the corresponding final time, 
much after the collision. Consider, then, in addition to the usual real 
integration path from to to tl ,  a complex path with the same ends, com- 
posed of the three segments (t o, s o + ia), (s o + ia, s 1 + ia), and (sx + ia, t~). 
If a < z*, then the change of any dynamical variable along the two paths 
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Fig. 6. The analyticity strip ~*, relative to the true mot ion x(t), as a function of oJ, for a 
rotator with interaction potential (3.1). 
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must coincide. We found it convenient to use as a test variable the energy 
exchange AE itself, and observed that AE as function of o- for fixed initial 
data is practically a step function: it remains constant and very close to 
zero (for large co) for ~r up to a rather well-defined value ~* and then 
jumps to a value of order one. Other dynamical variables present a similar 
discontinuous behavior. On the contrary, the total energy is found to be 
practically insensitive to the crossing of the singularity, as it should be, 
since the energy in principle is independent of t (energy in particular is 
always well conserved). In our opinion, this is a somehow critical test on 
the reliability of the above procedure to compute ~*. 

The value of ~* depends on the initial data, in particular on co; a typi- 
cal result is illustrated in Fig. 6, where ~* is plotted versus co for the case 
of the rotator, with interaction potential (3.1), at E ; =  1. The difference 
between ~* and ~, as reported in Table I, is striking. Similar results were 
also found for other potentials as well as for the oscillator in the case of 
nonvanishing Eo y. The whole situation, in our opinion, is somehow 
paradoxical; a short comment on this point is deferred to the Conclusions. 

6. C O N C L U S I O N  

The Landau-Teller heuristic approach to adiabatic invariants has 
been critically revisited and applied to particular models, describing 
elementary scattering processes of fast oscillators or rotators. The essence 
of the approach is the interpretation of the coefficient 2 of co in the 
exponential laws as the width of the analyticity strip of the solutions of the 
system extended to complex times; the heart of the approximation is 
replacing the true value T* of the analyticity width with the corresponding 
value ~ of a drastically simplified scattering problem, namely a problem in 
which the internal degree of freedom is suppressed, either by putting to 
zero its amplitude, as in the original version of the approximation, or by 
suitably averaging on a phase, as we did in our action-angle reformulation 
of the approximation. 

Quite accurate numerical experiments have been performed to test the 
reliability of the Landau-Teller approach. The results, as we have seen, are 
quite embarrassing; indeed, the approximation seems to works excellently, 
both qualitatively and quantitatively (even in the details, namely concern- 
ing the behavior of higher Fourier components) if one makes reference to 
the "approximate" value v; on the contrary, it completely fails if one refers 
to the "true" quantity ~* (the only exception is the case considered in 
ref. 11, namely the oscillator at zero initial energy, for which, asymptoti- 
cally for large co, z and ~* turn out to coincide). Of course, numerical tests 
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are affected by errors: however, as we have seen, there are good theoretical 
reasons to believe that, in the problem at hand, numerical errors are negli- 
gible; moreover (as is perhaps the best accuracy test) the overall coherence 
and evidence of numerical results is, in our opinion, particularly sharp. 

It is not so easy to interpret such results. However, the failure of the 
approach if based on the behavior of the true solution x(t)  is not totally 
unexpected if one recalls some basic facts of classical perturbation theory. 
The idea is roughly as follows: as is well known, in classical perturbation 
theory one constructs small canonical changes of variables which give the 
Hamiltonian a suitable normal form; with reference, say, to the oscillator 
Hamiltonian (4.2), one introduces a canonical transformation 

(I, ~o, p, x ) =  cg(i,, ~o', p', x'; co) (6.1) 

near to the identity for large co, such that the transformed Hamiltonian 
H ' =  Ho cg is q/ independent up to an exponentially small remainder: say, 

t2 

~-~ '.co) H' = col' + + V(x') + co - lg(I', p', x ,  

+ co-le-~ (p', p', x'; co) (6.2) 

with suitable co*; both H '  and the canonical transformation cg turn out to 
be analytic in a convenient complex domain. 

To make clear the source of the difficulties, and understand in par- 
ticular why for large co the singularities of x(t)  get closer to the real axis, 
let us forget the small remainder in (6.2), whose role at this point is not 
essential. The behavior of the normalized variables I', ~0', p', and x'  is then 
trivial: indeed, one has I ' ( t )=  16, q)'(t)'~ ~O'o + cot, while p', x'  practically 
move as in a free collision; in particular, x'(t)  and p'(t)  turn out to be 
analytic for t in some complex strip whose width is independent of co. The 
situation, however, drastically changes if one looks at the original variables 
x(t)  and p(t): indeed, assume, to be definite, that the canonical transforma- 
tion (6.1) is analytic as a function of the angle ~0' in a strip lira ~0'1 < p ;  
clearly, for IIm tl > p/co, ~o'(t) escapes the analyticity domain, and corre- 
spondingly, all of the original variables are expected to become singular. 7 
The presence of the exponentially small remainder cannot change substan- 
tially such a picture; in particular, one should expect that for large co the 
analyticity strip of x(t)  is roughly proportional to co-l, as we find in our 
numerical computations. 

From this heuristic discussion, it appears clearly that on one hand the 
difficulty is unavoidable, and on the other hand it is somehow spurious, 

v This is not in contrast with the results of ref. 11, since for vanishing initial action, x(t) and 
p(t) turn out to be almost independent of q/. 
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being related, so to speak, to the use of "wrong" variables to describe the 
motion. It is quite clear, in our opinion, that the approximate motion 2(t) 
leads to good results, not because it is close to x(t), but rather because it 
is close, from the point of view of the analytic structure, to the normalized 
motion x'(t), so that the above spurious difficulty is absent. We plan to 
analyze this delicate question in the near future, and more generally, to 
study more deeply the relation between the Landau-Teller approach and 
the methods of classical perturbation theory. 

REFERENCES 
1. A. I. Neishtadt, Prikl. Matem. Mekan. 45:80 (1982) [PMM USSR 45:58 (1982)]. 
2. G. Benettin, L. Galgani, and A. Giorgilli, Commun. Math. Phys. 113:87 (1987). 
3. G. Benettin, L. Galgani, and A. Giorgilli, Commun. Math. Phys. 121:557 (1989). 
4. L. Landau and E. Teller, Phys. Z. Sowjetunion 10:34 (1936); in D. Ter Haar, ed., Collected 

Papers ofL.  D. Landau (Pergamon Press, Oxford, 1965), p. 147. 
5. J. H. Jeans, Phil Mag. 6:279 (1903). 
6. J. H. Jeans, Phil. Mag. 10:91 (1905). 
7. D. Rapp, J. Chem. Phys. 32:735 (1960). 
8. D. Rapp and T. Kassal, Chem. Rev. 65:61 (1969). 
9. T. M. O'Neil and P. G. Hjorth, Phys. Fluids 28:3241 (1985). 

10. T. M. O'Neil, P. G. Hjorth, B. Beck, J. Fajans, and J. H. Malmberg, Collisional relaxation 
of strongly magnetized pure electron plasma (theory and experiment), in Strongly Coupled 
Plasma Physics (North-Holland, Amsterdam, 1990), p. 313. 

11. A. Carati, G. Benettin, and L. Galgani, Commun. Math. Phys. 150:321 336 (1992). 
12. G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity 

symplectic mappings, with application to symplectic integration algorithms, to appear in 
J. Stat. Phys. 

13. O. Baldan and G. Benettin, J. Stat. Phys. 62:201 (1991). 
14. P. J. Channel and C. Scovel, Nonlinearity 3:231-259 (1990). 


